
Volume21, Number3 May-June 1995
ISSN: 0361-7688 CODEN: PCSODA

PROGRAMMING AND
COMPUTER SOFTWARE

Official English Translation of Programmirovanie

Editor-in-Chief
Viktor P. Ivannikov
Corresponding Member of the Russian Academy of Sciences
Professor, Director of the Systems Research Institute, Russian
Academy of Sciences

A Journal of Original Papers and Reviews on
Theoretical and Applied Aspects of Computer Science

Translated and Published by
MAMK HAYKA/INTERPERIODICA PUBLISHING

Distributed worldwide by PLENUM/CONSULTANTS BUREAU

Contents

Vol. 21, No. 3, 1995
Simultaneous English language translation of the journal is available from MAMK Hayica/Interperiodica Publishing (Russia).
Distributed worldwide by Plenum/Consultants Bureau. Programming and Computer Software ISSN 0361-7688.

Evaluation of Attributes in Attribute Grammars
V M. Kurochkin 109

Strengthening of the Theorems on Polynomial Queries
A.B.Livchak 113

Applications of Hypermedia Systems
J. Lennon and H. Maurer 121

A Standard Syntax-Directed Editor for Hyperprogramming Systems
E. A. Zhogolevy E. A. Kuz'menkova, O. L Mailingova, andE. V Poprygaev 135

Visual Syntax of the DRAKON Language
V D. Parondzhanov 142

Languages and Interfaces for Facial Animation
N. Magnenat-Thalmann 154

Programming and Computer Software, Vol. 21, No. 3, 1995, pp. 142 -153.
Original Russian Text Copyright © 1995 by Programmirovanie, Parondzhanov.

Visual Syntax of the DRAKON Language
V. D. Parondzhanov

Avtomatiki i Priborostroeniya NPO, ul. Vvedenskogo 1, Moscow, 117342 Russia
Received April 22, 1993

Abstract -A method for flowchart formalization and nonclassical structurization called DRAKON is suggested.
The family of DRAKON visual programming languages is presented. The visual language syntax is described.

1. INTRODUCTION

In the development of on-board and ground-based
software for the "Buran" orbiter, the programming lan-
guages PROL2, DIPOL, PSI-FORTRAN, LAKS,
ASSEMBLER, and others were used. The first three
were developed at the Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences. The expe-
rience gained from the application of these languages
has resulted in the concept of the visual programming
language DRAKON (the name is derived from the Rus-
sian abbreviation for Friendly Russian Algorithmic lan-
guage That Provides Reliability). DRAKON is being
developed at the Avtomatiki i Priborostroeniya NPO, in
cooperation with the Keldysh Institute of Applied
Mathematics, and is intended for the development of
real-time software, as well as for educational purposes.

Improvement of program comprehensibility is
among the most important requirements the DRAKON
language should fulfill. This is connected with the fact
that "the modern program of high quality should not
only be efficient and reliable but also possess the most
important properties of comprehensibility and support-
ability" [1, p. 17]. Further details on the great impor-
tance of comprehensibility can be found in [2-6].

It is well known that programming visualization
is the most powerful means for improving program
comprehensibility [7-9]. Flowcharts were used for this
purpose [10, 11]. Recently, however, flowcharts have
become subject to criticism [12 - 14]. Their opponents
say that flowcharts are useless for structured program-
ming [8, pp. 165 - 177; 15], cannot be formalized, and
thus "cannot be used for direct input into a machine"
[16], occupy many pages while "only very restricted
material can be written in their cells" [17], "introduce
additional inconvenience in education and decrease
efficiency of comprehension," and in addition, are not
equally acceptable for all. They are preferred only by
"individuals with a dominant right hemisphere, those
oriented toward visual information, intuitive ones, and
those capable of pattern recognition; however, they are
rejected by individuals with a dominant left hemi-
1 Comprehensibility is "the program property of minimizing the

intellectual effort required for its comprehension" [1].

sphere who are oriented toward verbal information and
inclined toward deductive reasoning" [18], etc.

Until 1980, flowcharts were "the most widely
used means" [14], while today, they "are no longer
regarded as necessary" [17], and "their popularity has
decreased" [15]. In spite of a few attempts to adjust
them for modern needs (SDL language, Cados
project [19], etc.), flowcharts are obviously not part of
the rapidly developing process of programming visual-
ization, and their enormous potential capabilities are
neglected.

The DRAKON language enables us to eliminate or
at least significantly relax the disadvantages mentioned
above. The term "DRAKON-chart" is used for the
flowcharts designed according to the DRAKON rules.

2. DRAKON VISUAL LETTERS AND WORDS
Figure 1 shows the letters of the DRAKON alpha-

bet. They are named "DRAKON-letters," or "icons."
Letters are unified into the "DRAKON-words," a list of
which is given in Fig. 2. In Fig. 1, icons 1 -1 7 and 19 -
21 include a closed contour that must contain a text.
The size of icon 22 can be enlarged, and it may contain
not only text but also graphics and video, as well as
controls for hypertext and multimedia. Icons 23 and 24
are ordinary textual comments (see [10], p. 10) that are
placed to the left or right of the DRAKON-words.

A " skewer-block" is a part of a DRAKON-chart that
has a single entry at the top and a single exit at the
bottom, both on the same vertical. The latter is called
the main vertical of the skewer-block. Icons 5 - 8, 10 -
17, 19, 21, and 22 in Fig. 1 and DRAKON-words 4 - 21
in Fig. 2 are examples of skewer-blocks.

A "terminator" is a part of a DRAKON-chart that
has either a single exit at the bottom and no entry, or a
single entry at the top and no exit. The icons 1 - 3 in Fig.
1 and DRAKON-words 1 and 2 in Fig. 2 are examples.

3. FAMILY OF THE DRAKON-LANGUAGES
The term DRAKON denotes a family of languages

that contain DRAKON-1, DRAKON-2, DRAKON-
BASIC, DRAKON-PASCAL, DRAKON-C,
DRAKON-ASSEMBLER, etc. All the languages have

0361-7688/95/2103-0142$12.50 © 1995 MAHK Hayкa/Interperiodica Publishing

the same visual syntax, which is the visual standard of
DRAKON, and differ only in textual syntax.2

DRAKON-1 is a visual pseudocode and, like a stan-
dard pseudocode or the PDL language [22], serves for
the development of draft programs. DRAKON-2 is a lan-

guage for real time visual programming. The other lan-
guages (DRAKON-BASIC, DRAKON-PASCAL, etc.)
are hybrids. A hybrid language, such as DRAKON-C,
is obtained by unifying the visual syntax of DRAKON
and the textual syntax of C according to certain rules.

Abstract drakon-charts, i.e., those whose icons are empty (not
filled with text), are a language of "polyprogramming" in the
sense of the program scheme theory [20]. They are thus a multi-
language whose abstraction level is intermediate between the
Martynyuk and standard schemes. The connection between
abstract drakon-charts and program schemes is of a fundamental
nature and leads to some interesting problems related to the fact
that "the efficiency problem for translated programs grows into
the automation problem for designing high quality programs"
[21, p. 228].

4. EXAMPLES OF DIFFERENCES
BETWEEN DRAKON-C AND C

Figure 3 shows seven examples of programs in
C and equivalent programs in DRAKON-C. They
facilitate understanding of the principles of design of a
hybrid language.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

VISUAL SYNTAX OF THE DRAKON LANGUAGE 143

DRAKON language

DRAKON-letter
Drakon-

letter DRAKON-letter

Drakon-
letter

Title

Headline

Shelf

Question

Choice

Case

Begin of FOR loop

Insertion

Period

Start timer

Loop arrow

Silhouette arrow

To transform a C program into a DRAKON-C pro-

gram, it is necessary to divide the C program code into
two parts. The first part goes unaltered into a
DRAKON-C program and is placed inside the
DRAKON visual elements. The second part, which
may be called "removable" or "parasite," becomes
unnecessary and disappears, turning into graphical
lines and keywords "yes" and "no."

Figure 3 shows that the list of C language parasite
(removable) elements is rather impressive: it includes all
the keywords in Examples 1-7, except for "default,"

all braces, brackets, parentheses, colons, and labels, the
comments in examples 3 - 5 , and the semicolons in
examples 2, 3, 7 and partially 6.

5. VISUAL SEMANTIC FRAMEWORK
OF A PROGRAM

From the reader's point of view, any unknown non-
trivial program is a problem that should be understood.
To ease this problem, it is necessary to divide it into
parts and reveal a semantic structure. The main diffi-
culty is that none of the current existing programming

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

PARONDZHANOV 144

DRAKON language

DRAKON word DRAKON word
Name

of the DRAKON word
Name

of the DRAKON word

Title with parameters

Fork

Switch
(number
of cases >=2)

ARROW loop

SWITCH loop

WAIT loop

Timer-driven shelf

Timer-driven start timer

Timer-driven insertion

Timer-driven
WAIT loop

Timer-driven
SWITCH loop

Timer-driven
ARROW loop

Timer-driven fork

 VISUAL SYNTAX OF THE DRAKON LANGUAGE

languages provide an effective aid to the reader for
understanding the visual semantic framework of a program
instantly. The DRAKON language has special means for
providing a solution to the problem.

The top part of a DRAKON-chart is called a "cap"
(see Fig. 4). This includes the algorithm header (the
Title icon) and several Headline (branch name) icons
(see Fig. 1). The purpose of the cap is to help the
reader obtain an instant (in a few seconds) answer to the
three following questions:

(1) What is the name of the problem?
(2) How many parts does it consist of?
(3) What is the name of each part?
Here are the answers for Fig. 4.
What is the name of the problem? Bus journey. How

many parts does it consist of? Four. What is the name
of each part? (1) Search for a bus. (2) Waiting for a bus. (3)
Entering the bus. (4) Bus trip.

To help the programmer formalize the semantic partition
of a problem (program being designed), DRAKON
provides a compound visual operator "branch" that has no
analogs in the known languages. The division of the
problem into N parts is performed by partitioning the
program into N branches.

The branch has a single entry and one or more exits. An
entry is represented as an Headline icon (see Fig. 1)
containing a branch identifier. The visual operator
"Headline " implements no actions; it serves only to
declare the branch name, i.e., the name of the semantic part.
Execution of a DRAKON program starts from the branch to
which the Title icon points (see Fig. 1 and 4). The exit
from the branch is represented as an Address icon containing
the name of the next branch to be executed. The visual
operator "Address" is the same as goto, but it transfers
control only to the start of the chosen branch.

To clarify the main point, let us describe the
DRAKON program in Fig. 4 with the aid of a usual textual
pseudocode.

It is clear from Fig. 5 that some changes have been
introduced into the traditional pseudocode to facilitate the
description of branches. For instance, two new textual
operators have appeared:

BRANCH (branch identifier)
ADDRESS (branch identifier)

The BRANCH operator of the textual pseudocode
declares the branch name (written in visual pseudocode
inside the Headline icon). The ADDRESS operator of the
textual pseudocode transfers control to the textual operator
BRANCH whose name is written in the operand field of
the ADDRESS operator. Comparison of the two
pseudocodes (see Fig. 4 and 5) shows that the visual one
is certainly more comprehensible than its textual
counterpart.

Another advantage is that graphics eliminate parasite
elements. In the textual pseudocode, the following
keywords turn out to be parasite: ALGORITHM,
BRANCH, ADDRESS, END BRANCH, IF, ELSE, END
IF, WAIT LOOP, END WAIT, COMMENT, GOTO, as well
as labels.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

DRAKON-C

in DRAKON-C

145

Unlike the textual pseudocode, DRAKON provides
the reader with an efficient three stage method for com-
prehending actions of the unknown or forgotten pro-
gram. At the first stage, in analyzing the cap the
reader can comprehend the visual semantic structure of
the program and its partition into significant semantic
parts, i.e., branches. At the second stage, a deeper anal-
ysis of each branch is performed. At the third one, the
interaction of branches is considered.

6. SILHOUETTE AND PRIMITIVE

A DRAKON-chart with branches is called
"silhouette," and one without branches is termed
"primitive." The silhouette in Fig. 4 can be represented
as a primitive (see Fig. 6). Formally speaking, a primitive
is a serial connection of skewer-blocks and two
terminators: Title and End. An exit from the Title (starting
terminator) and an entry into the End are always on the
same vertical, which is called the main vertical (skewer)
of a primitive. The main verticals of skewer-blocks
also lie on this line (see Fig. 6).

The use of a primitive is recommended if a
DRAKON-chart is quite simple and contains about 5 -
1 5 icons. Otherwise, a silhouette is preferable, since it
improves program readability. Comparing Fig. 4 and
Fig. 6 it is easy to see that a silhouette (Fig. 4) is more
comprehensible than a primitive (Fig. 6), because
a silhouette has a cap allowing you to understand
the problem structure instantly. Moreover, large
structural parts of the program (branches) are clearly

distinguished; they are visually and spatially separate,
making a stable, recognizable, predictable, and
integrated image. In a primitive, the structural parts are
mixed together and not divided, which impairs
readability and analysis of complex programs. How-
ever, a primitive is preferable for very simple programs
that contain not more than 5-15 icons.

7. THE MAIN ROUTE

Consider the following problem. Given the complex
labyrinth that connects the beginning and end of a com-
plex program, it is necessary to select, in accordance
with some criterion, a single route that serves as a sort
of "leading thread." It should be possible to visually
compare any other route to this thread to avoid getting
lost among entangled paths. This thread (let us call it
the "main route") should be easily distinguishable.
In other words, casting a casual glance at a DRAKON-
chart, we should see the distinct reference points that
allow us to find easily and accurately the main route,
as well as the other routes ordered with respect to the
main one.

The notion of the main route has two aspects: visual
and logical. From the visual point of view, the main route
of a primitive is its skewer. Similarly, the main route of
a branch is its skewer, i.e., the vertical from the Headline
of the branch to its Address icon, and if the branch has
several exits — to the leftmost Address icon. The main
route of a silhouette is a serial connection of the
branches’ main routes in order of their execution.успех

Let us consider the logical aspect. The exit from a
fork or switch that maximizes the success should be
placed on the main route. This can be achieved by
swapping the words "yes" and "no" at forks and
transposing the switch cases, as well as their adjoint
block sequences. Each branch should be constructed
according to the single rule: verticals are placed from left
to right in order of decreasing success from the actions
they describe. For example, in Fig. 5 the "entering a
bus" branch has three verticals. The left vertical (main
route) describes the greatest success, since you have a
seat. The right vertical describes the least success, since
you have left the bus and the trip is delayed. The middle
vertical (placed above the block "Do you want to travel
standing?") occupies the intermediate position, since
either partial success or failure takes place depending
on the answer given.

In cases where the notion of "success" is irrelevant,
another sensible criterion should be chosen so that a
shift from the main route to the right would always have
some reasonable meaning. For example, in the process
of solving mathematical problems, exits from the
fork and switch cases should be arranged from left to
right in order of increase of mathematical quantities that
correspond to them.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

no

yes

in DRAKON-C

PARONDZHANOV

146

ALGORITHM Bus_journey
BRANCH Search_for_a_bus

EXECUTE Find_a_bus_stop_and__queue_up
ADDRESS Waiting_for_a_bus

END BRANCH
BRANCH Waiting_for_a _bus

IF Has a_bus_arrived? = Yes
EXECUTE Passengers_boarding
WAIT LOOP

IF Is_it_your_turn? = No
COMMENT Wait until it is your turn

END WAIT
IF Is_it_possible_to_enter_the_bus? = Yes

ADDRESS Entering_the_bus
M1: ELSE

COMMENT Wait for the next bus
ADDRESS Waiting_for_a_bus

END IF
ELSE

GOTO Ml .
END IF

END BRANCH
BRANCH Entering_the_bus

EXECUTE Enter_the_bus
And so on

Fig. 5. The textual pseudocode corresponding to the graphic pseudocode in Fig. 4
(only two branches of four are described)

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

DRAKON-chart

VISUAL SYNTAX OF THE DRAKON LANGUAGE 147

Thus, DRAKON makes it possible for the reader to see
the main route of a complex and branched algorithm at
once. Moreover, it is easy to see that the shifts of verticals
from the main route are not random, but meaningful and
predictable, which improves understanding of the
algorithm.

8. THE DRAKON LANGUAGE
AND THE ASCHCROFT-MANNA METHOD

When drawing standard flowcharts, two types of line
crossings are allowed: an explicit crossing marked by a
cross, and an implicit one made by so-called connectors.
A connector "is used to break a line and continue it

elsewhere ... to avoid unnecessary crossings" (see [10, p.
10; 14]).

Both the described crossings are prohibited by the
DRAKON rules, and the following question arises: is it
possible to represent an arbitrary algorithm in the form of a
DRAKON-chart?

Proposition 1. Any structured program can be
written in DRAKON in two ways: as a primitive or as a
silhouette.

Proposition 2. An arbitrary (unstructured) program
cannot be represented as a primitive in certain cases;
however, by means of some equivalent transformations,

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

drakon-chart equivalent to the silhouette in Fig. 4

PARONDZHANOV 148

admitting the introduction of additional variables (branch
identifiers), it can always be represented as a silhouette.

Let us clarify the problem with examples. Figure 7
shows a forbidden drakon-chart, namely, a primitive with an
unrecoverable (without introducing additional variable)
crossing. Figure 8 shows a silhouette, which, as is easily
seen, is equivalent to the primitive in Fig. 7, but does not
contain illegal line crossing.3 Thus, the example in Fig. 7
and 8 confirms the validity of Proposition 2.

In addition, the primitive in Fig. 7 is an example of a
unstructured program taken from [22, p. 140]. The silhouette
in Fig. 8 is equivalent to the recursive structured program
(see [22, p. 143]) obtained from the original program [22, p.
140] with the aid of the "advanced structuring method" (see
[22, pp. 139 -146]) based on the method of introducing a
state variable suggested by Aschcroft and Manna in
[23] (see also [24]). The pseudorecursive construction
named "silhouette" is equivalent to a combination of two
constructions: the external loop and internal switch that
are used in the Aschcroft-Manna method for obtaining a
recursive structured program. Discussion in detail is beyond
the scope of this article.

9. REAL TIME VISUAL OPERATORS

Figure 9 shows an example of a real-time program that
has two inputs and one output. Calling up the OVERALL
CHECK program, execution starts from the MOTOR
CHECK branch. If the name PARTIAL CHECK is used,
execution begins from the LOAD CHECK branch.

9.1. Operators "Pause, " "Start timer,"
"Timer-driven synchronizer," and "Parallel process"

In Fig. 9, icon 19 "Start timer" contains the entry T =
0. This operator generates, sets to zero, and starts the virtual
timer T. In the same branch, there is icon 20 (timer-driven
synchronizer) with the entry T = 1min 15s (1 minute 15
seconds). This means that if the conditions described in icon
9 are met, then the procedure TURN REACTOR ON will
be called up only after the timer T counts 1 minute 15
seconds. The same branch contains icon 17 (Pause) with
the entry 16s (16 seconds). This means that if the procedure
TURN REACTOR ON is completed, then 16 seconds
should lapse before calling up the procedure TURN LOAD
ON.

The second branch contains two icons 21 that provide
control for parallel processes. After completion of the
procedure TURN LOAD ON, the parallel process
PLASMA CONTROL is stopped, and the process
ARC CONTROL started; the procedure STATION

3 Crossings "hidden" in icon 26 (see Fig. 1) are legal.

CHECK is then immediately invoked. The latter procedure
works simultaneously and parallel with the process ARC
CONTROL.

9.2. WAIT loop

Consider the following problem. Suppose that it is
necessary to wait for three minutes until at least one of two
events "Motor 1 norm" or "Motor 2 norm" occurs. When one
of events occurs, the reactor should be turned on. If none
of the events occur for three minutes, the station should be
turned off.

Solving the problem in Fig. 9 requires two operators:
"Start timer," which counts three minutes and WAIT loop.
The latter contains the icon 18 (cyclic pause) and three
icons 9 with entries Motor 1 norm, Motor 2 norm, and T >
3m. The last operator checks whether the timer value exceeds
3 minutes. If none of the events occur and the timer value does
not exceed 3 minutes, control is transferred to the drakon-
scheduler contained in real-time operating system (this is

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

149 VISUAL SYNTAX OF THE DRAKON LANGUAGE

drakon-chart: a primitive with line crossing

shown in Fig. 9 by the empty Period icon. Then, the
drakon-scheduler transfers control periodically (for
example, every four seconds) to the start of the WAIT
loop. It is clear from Fig. 9 that inquiries to the WAIT
loop stop either at the moment when at least one of the
expected events occurs, or when three minutes elapse
and none of the events occur.

10. DESCRIPTION OF DRAKON
VISUAL SYNTAX ввод

Definition 1. The valent point of the first kind is a
point located on a connecting line for which the "insert"
operation is defined. The set of valent points of the

first kind is defined by means of enumeration in Fig. 2
(see items 3 - 8 and 11 - 16). Note that in real drakon-
charts, valent points are assumed but not shown.

Rule 2. The "insert" operation is performed as fol-
lows. A connecting line is broken at the valent point,
and a skewer-block is inserted in this place (see Fig. 10).

All skewer-blocks are subdivided into three types:
atoms, α-elements, and β-elements.

Definition 3. The atom is a drakon-letter or a drakon-
word that is a skewer-block, except for icons 5, 6, 12,
and 13 in Fig. 1.

Definition 4. The atom is called empty if it is equiv-
alent to an empty operator.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

PARONDZHANOV 150

An example of the empty atom is "fork" (item 3 in
Fig. 2). To make a "fork" operator nonempty, it is
necessary to place at least one nonempty operator in at
least one valent point of the first kind in the fork.

Rule 5. Empty atoms are allowed for all stages of
designing a drakon-chart, except for the last stage.

Definition 6. A sequence of atoms is a compound
skewer-block, each skewer-element of which is an
atom. This definition is equivalent to the formula

Sequence of atoms :: = atom {atom}
Rule 7. A set of α-elements is obtained from the set

of sequences of atoms by multiple application of the
"insert" operation according to rule 2, where "insert
skewer-block" should be read as "insert an atom."

Nonempty atoms and α-elements may be called the
structural elements of the DRAKON language, since
they satisfy the postulates of classical structured pro-
gramming [22, 24]. However, DRAKON has wider
expressive capabilities. Along with α-elements, it
enables us to design β-elements and γ-elements, which
may be called metastructural. Formal metastructural
elements help to overcome the known disadvantages of
classical structured programming.

Definition 8. The valent point of the second kind is
a point located at an entry or an exit of a skewer-block.

Definition 9. A liana is a line connecting any exit
from a Question icon or Case icon, which is not on a
skewer and is not a loop cycle, with another line.

Definition 10. Transplantation of a liana is a
drakon-chart transformation performed as follows:
the lower end of a liana is detached from its place and
attached to any valent point of the first or second kind.
The following conditions should be met: no other line
is crossed, no other branch is touched, no new loop
appears, and no second entry into a loop is created
(Fig. 11).

Rule 11. The set of β-elements is obtained from a
set of sequences of α-elements by multiple application
of the "transplantation of liana" operation.

γ-elements have one entry and at least two exits.
Therefore, unlike α- and β-elements, γ-element is not a
skewer-block.

Rule 12. The "grounding of a liana" operation is
performed as follows (see Fig. 12):

1. The end of a liana is detached from its place and
is attached to any point on the lower bus (lower
horizontal) of a silhouette to which it can be dragged
without crossing other lines.

2. The Address icon is automatically inserted into
the lower part of a liana by the "insert" operation.

Rule 13. The set of γ-elements is obtained from the
set of sequences of α- and β-elements by multiple
application of the "transplantation of a liana" and
"grounding of a liana" operations.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

151 VISUAL SYNTAX OF THE DRAKON LANGUAGE

2 1

1

3

Definition 14. The axiom-primitive and the axiom-
silhouette are the prototypes shown in Fig. 13 that serve
for the design of primitive and silhouette drakon-charts,
respectively.

Definition 15. The points marked by digits 1, 2, 3
in Fig. 13 are called the axiom valent points of types
1, 2 and 3, respectively.

Rule 16. The "insert a skewer-block" operation
is performed as follows: according to rule 2, a
skewer-block is inserted into the axiom valent point
of type 1 or into the drakon-chart valent point of
types 1 or 2.

Rule 17. The "selection of an initial terminator"
operation is performed as follows: icon 1 (see Fig. 1) in
an axiom may be replaced by terminators shown by item
2 in Fig. 1 and items 1 and 2 in Fig. 2.

Rule 18. The "deletion of the end of a primitive"
operation is performed as follows: in the "primitive"
drakon-chart, the End icon and the entering vertical
appendix are removed. This is necessary for
describing an infinite parallel process.

Rule 19. Any correctly designed "primitive"
drakon-chart is a result of transforming an axiom-
primitive by the finite number of the following opera-
tions: insert a skewer-block, transplantation of a liana,
selection of an initial terminator, and deletion of the End
icon of a primitive.

Definition 20. The fragment is a figure shown in
Fig. 14. The fragment consists of an upper bus, a stan-
dard branch, and a lower bus.

Rule 21. The "Insert a fragment" operation is
performed as follows: in an axiom-silhouette or a silhou-
ette drakon-chart the upper bus is broken at the valent
point of the third kind, and a fragment is inserted and
attached to the upper and lower buses of a silhouette.

Rule 22. The operation "additional entry into a pro-
gram" is performed as follows: an additional initial ter-
minator is placed above the Headline icon (see the
additional entry PARTIAL CHECK in Fig. 9).

Rule 23. The "deletion last of the branch" operation
is performed as follows: the last branch and the enter-
ing vertical appendix of the upper line are deleted from
a silhouette drakon-chart. This is used for describing an
infinite parallel process.

Rule 24. Any correctly designed silhouette
drakon-chart is a result of the transformation of an axiom-
silhouette by a finite number of the following
operations: Insert a fragment, insertion of a skewer-
block, transplantation of a liana, grounding of a liana,
selection of an initial terminator, additional entry into a
program, and deletion of the last branch.

Example. Figure 15 shows a drakon-chart contain-
ing α-, β-, and γ-elements. The silhouette in Fig. 15 can
be interpreted as a deterministic finite automaton [25],
which is shown in Fig. 16 (an input alphabet and a
transfer function of an automaton are not shown).4
4 The DRAKON language is described in detail in book by

Parondzhanov V.D. “Learn to Draw Clear Flowcharts: DRAKON
as an Accessible Visual Language for Systemizing Knowledge,”
which will be published in 1995 by Radio i Svyaz Publishers.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

Fig. 16. A deterministic finite automaton corresponding to a
silhouette in Fig. 15.

PARONDZHANOV
152

ACKNOWLEDGMENTS

I am grateful to my colleagues V.A. Kryukov, L.K.
Eisymont, V.V. Lutsikovich, K.B. Fedorov, V.V.
Baltrushaitis, G.N. Kostochkin, G.R. Kosenko, A.B.
Aleshin, S.A. Kashinskii, A.I. Semenov, G.A.
Gulenkov, S.A. Shcherbakov, V.G. Gora, L.D. Tyurina, and
A.V. Kopylov for developing software for the "Buran"
orbiter and for their ideas, advice, and friendly help.

REFERENCES
1. Sarkisyan, A.A., Povyshenie Kachestva Programm s

Pomoshch'yu Avtomatizirovannykh Metodov (Improve-
ment of Program Quality using Automated Methods),
Moscow, 1991.

2. Robson, D.J., Bennet, K.H., Cornelius, B.J., and
Munro, M., Approaches to Program Comprehension,
J. Syst. Software, 1991, no. 14, pp. 79 - 84.

3. Parondzhanov, V.D., The Prospects for Information
Technologies and an Increase of Productivity of Intellec-
tual Work, NTI, Series 1, 1993, no. 5, pp. 8 -11.

4. Parondzhanov, V.D., The Crisis of Civilization and
Unsolved Problems of Informatization, NTI, Series 2,
1993, no. 12, pp. 1 - 9.

5. Parondzhanov, V.D., What Fundamental Idea Will Win in
the XXI Century? Tekhnologiya Programmirovaniya
90-kh Godov: Mezhdunarodnaya Vystavka-Yarmarka
(Software Engineering of the 90's: International
Conference & Fair), Kiev, 1991, pp. 37 - 39.

6. Parondzhanov, V.D. The Unexpected Lessons of Cosmo-
nautics of the XX Century: The New Role of the Human
Factor, and the Cognitive Revolution in Information
Technologies, Tr. I Mezhdunar. Aviakosm. Konf.
"Problemy Osvoeniya Kosmosa" (Proc. 1st Int. Aerospace
Conf. "Problems of Conquering Space"), Moscow, 1994, vol.
2 (Winged Space Systems).

7. Shu, N.C., Visual Programming, New York: Van Nostrand
Reinhold, 1988.

8. Martin, J. and McClure, C. Diagramming Technique for
Analysts and Programmers, New York: Prentice-Hall,
1985.

9. Khlebtsevich, G.E. and Tsygankova, S.V. A Visual Program-
ming Style: Notions and Capabilities, Programmirova-
nie, 1990, no. 4, pp. 68 - 79.

10. GOST (State Standard) 19.701-90: Schemes of Algorithms,
Programs, Data, and Systems: Notation and Drawing Rules.

11. Panteleeva, Z.T., Grafika Vychislitelnykh Protsessov.
(Graphics of Computational Processes), Moscow, 1983.

12. Brooks, Ph. R., Jr. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley Publishing
Company Reading, 1975.
Kak Proektiruyutsya i Sozdayutsya Programmnye
Kompleksy. Mificheskiy Cheloveko-Mesyats: Ocherki
po Sistemnomu Programmirovaniyu. — Moscow, 1979.

13. Glass, R.L. Software Reliability Guidebook. Prentice-Hall,
Inc. Englewood Cliffs, New Jersey, 1979.
Rukovodstvo po Nadezhnonmu Programmirovaniyu. —
Moscow, 1982.

14. Peters, L.J., Methods for Software Linkage and Repre-
sentation, IEEE Proc, 1980, vol. 68, no. 9, p. 60.

15. Tolkovyi Slovar' po Vychislitelnym Sisfemam
(The Explanatory Dictionary of Computer Systems),
Moscow, 1991.

16. Verbitskii, I., Meet the R-technology, NTR: Problemy i
Resheniya, 1987, no. 13, p. 5.

17. Fox, J.M. Software and its Development. Prentice-Hall,
Inc. Englewood Cliffs, New Jersey, 1982.
Programmnoye Obespechenie i Ego Razrabotka —
Moscow, 1985.

18. Shneiderman, B. Software Psychology: Human Factors in
Computer and Information Systems. Winthrop Publishers, Inc.
1980.
Psikhologiya Programmiwvaniya: Chelovecheskie Facto-
ry v Vychislitelnykh i Informatsionnykh Sistemakh. —
Moscow, 1984.

19. Smith, K., Programmers' Work Productivity Increase
under the Cados Project, Electronics, 1984, vol. 57,
no. 23.

20. Kotov, V.E. and Sabelfeld, V.K. Teoriya Skhem Pro-
gramm (Theory of Program Schemes), Moscow, 1991.

21. Kasyanov, V.N. Optimiziruyushchie Preobrazovaniya
Programm (Optimizing Program Transformations),
Moscow, 1988. f

22. Linger, R.C., Mills, H.D, and Witt, B.I. Structured
Programming: Theory and Practice. Addison-Wesley
Publishing Company Reading. 1979.
Teoriya i Praktika Strukturnogo Programmirovaniya. —
Moscow, 1982.

23. Aschcroft, E. and Manna, Z., The Translation of "Goto"
Programs into "While" Programs, Proc. IFIP Congr.,
1971.

24. Yourdon, E. Techniques of Program Structure and Design.
Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1975.
Strukturnoe Proektirovanie i Konstruirovanie
Programm. — Moscow, 1979.

25. Rayword-Smith, V.J. A First Course in Formal Languages
Theory. Blackwell Scientific Publication, Oxford, London.
1983.
Teoriya FormaVnykh Yazykov: Vvodniy Kurs. — Moscow,
1988.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 21 No. 3 1995

153 VISUAL SYNTAX OF THE DRAKON LANGUAGE

	144.pdf
	Binder140-143 .pdf
	140. титул.pdf
	141. содержание.pdf
	142.pdf

	144.pdf
	Binder140-143 .pdf
	140. титул.pdf
	141. содержание.pdf
	142.pdf
	143.pdf

